CRITICAL PATH INSTITUTE # **External Validation of Joint Propagation Model-Based Tau PET CenTauR units** alzheimer's Sociation QUANTITATIVE MEDICINE Alexis Moscoso Rial, 1,2 Antoine Leuzy^{2,3}, Lars Lau Raket^{4,†}, Victor L Villemagne^{5,6,7}, Gregory Klein⁸, Matteo Tonietto⁸, Emily Olafson⁹, Suzanne Baker¹⁰, Ziad S Saad¹¹, Santiago Bullich¹², Brian Lopresti¹³, Sandra Sanabria Bohorquez⁹, Olivia Lutz⁹, Mercè Boada^{14,15}, Tobey J Betthauser^{16,17,18}, Arnaud Charill¹⁹, Emily C Collins⁴, Jessica A Collins²⁰, Roger N Gunn²¹, Makoto Higuchi²², Eric Hostetler²³, R Matthew Hutchison²⁰, Leonardo Iaccarino⁴, Philip S Insel²⁴, Michael C Irizarry¹⁹, Clifford R Jack Jr²⁵, William J Jagust²⁶, Keith A Johnson^{27,28}, Sterling C Johnson^{16,17,18}, Yashmin Karten², Marta Marquié^{14,15}, Sulantha Mathotaarachchi³, Mark A Mintun⁴, Rik Ossenkoppele^{29,30}, Qi Huang³¹, Xiaxie Mao³¹, Johannes Gnörich^{32,33}, Ioannis Pappas³⁴, Ronald C Petersen³⁵, Konstantinos Chiotis³⁶, Gil D Rabinovici^{37,38}, Pedro Rosa-Neto^{39,40}, Christopher G Schwarz²⁵, Ruben Smith^{30,41}, Andrew W Stephens¹², Alex Whittington⁴², Maria C Carrillo⁴³, Michael J Pontecorvo⁴, Samantha Budd Haeberlein³, Billy Dunn⁴⁴, Hartmuth C Kolb³, Diane Stephenson², Nadine Tatton², Matthias Brendel^{45,46,47}, Fang Xie³¹, Christopher C Rowe^{6,7,48}, Oskar Hansson^{30,41}, Vincent Doré^{7,49} ## Background - **Tau PET imaging** enables *in vivo* quantification of tau pathology in Alzheimer's disease and is increasingly used in clinical trials for staging and outcome assessment. - Variability in tracers, acquisition, and processing complicates comparisons of tau PET results across studies and trials. - The **CenTauR approach**, recently developed by the CPAD Consortium, provides a standardized framework to harmonize tau PET quantitative metrics. ## Aim To explore the validitiy of the CenTauR harmonization approach for tau PET in independent datasets. #### Methods - We analyzed **head-to-head (n=118)**, **anchor point (n=368)**, and **test-retest (n=65)** tau PET datasets (*Leuzy et al.*, *Alzheimers Dement. 2024*) covering five radiotracers: [¹⁸F]flortaucipir, [¹⁸F]MK-6240, [¹⁸F]PI-2620, [¹⁸F]GTP-1, and [¹⁸F]RO948, to develop the **CenTauR harmonization approach**. - **SUVRs were computed using a standardized quantification pipeline**, based on the Centiloid framework and predefined CenTauR ROIs (*Villemagne et al., Alzheimers Dement (Amst). 2023*) (**Fig. 1A**). - The Joint Propagation Model (JPM) (Leuzy et al., Alzheimers Dement. 2024, Fig. 1B)— updated to account for tracer-specific variability in the CenTauR scale—was used to derive linear equations for converting SUVRs into CenTauR units. - External validation of JPM-based conversion equations was conducted using three matched cohorts (N = 535 per cohort, 1:1 based on age, clinical diagnosis, and Aβ status,) scanned with 3 different radiotracers: [¹⁸F]flortaucipir (ADNI, A05, SCAN), [¹⁸F]MK-6240 (CPAS, SCAN), and [¹⁸F]PI-2620 (HABS-HD, LMU, SCAN) (Table 1). - Tau PET positivity frequencies, established with binary (meta-temporal ROI) or staging-based (mesial-temporal and temporoparietal ROIs, *Jack et al. Alzheimers Dement. 2024*) approaches, were compared across the cohorts to assess the robustness of CenTauR harmonization. **Figure 1. A)** Surface-based projections of the CenTauR regions of interest ROIs (Villemagne et al., *Alzheimers Dement (Amst)*. 2023). **B)** Schematic of the Joint Propagation Model (JPM) for between-tracer harmonization of tau PET SUVR data. | | Cognitively Unimpaired | | | Cognitively Impaired (MCI or AD dementia) | | | |-----------------------|---|--|--|---|--|--| | | [¹⁸ F]Flortaucipir
(ADNI, A05, SCAN) | [¹⁸ F]MK-6240
(CPAS,SCAN) | [¹⁸ F]PI-2620
(HABS-HD, LMU,
SCAN) | [18F]Flortaucipir
(ADNI, A05, SCAN) | [¹⁸ F]MK-6240
(CPAS,SCAN) | [¹⁸ F]PI-2620
(HABS-HD, LMU,
SCAN) | | N | 412 | 412 | 412 | 123 | 123 | 123 | | Age | 69.9 (6.4) | 69.3 (6.9) | 69.0 (7.0) | 72.7 (8.0) | 72.1 (7.8) | 72.4 (7.9) | | Aβ-positive N,
(%) | 75 (18%) | 75 (18%) | 75 (18%) | 112 (91%) | 112 (91%) | 112 (91%) | Table 1. Characteristics of the participants from the matched external cohorts used for validation of CenTauR harmonization ### Results - We chose a meta-temporal ROI cut-off of 17.4 CenTauRs for binary classification, based on ROC analysis distinguishing visually positive vs. negative cognitively impaired individuals using the FDA-approved [¹⁸F]flortaucipir method (N=553; ADNI & A05). - For staging, we defined CenTauR values of 26 (mesial temporal) and 13.9 (temporoparietal) corresponding to 2 CenTauRz, and a 'High' category at 41.6 CenTauRs in the temporoparietal ROI (6 CenTauRz). CenTauR harmonization yielded highly consistent tau PET positivity frequencies across Aβ– CU, Aβ+ CU, and Aβ+ CI groups (≤3% difference between tracers; **Fig. 2A**. Compared to a CenTauRz ≥2 cut-off, CenTauR harmonization provided more consistent estimates (**Fig. 2B**). **Figure 2.** Frequency of tau PET positivity across the different diagnostics groups, as defined using either CenTauR (17.4; panel A) or CenTauRz (2 z-scores; panel B). Similarly, CenTauR-based harmonization resulted in highly consistent tau-PET based biological stages of Alzheimer's disease across the different radiotracer datasets (≤ 9% difference between tracers; **Fig. 3**). **Figure 3.** Frequency of tau PE⁻ positivity across biological stages of Alzheimer's disease. ## Conclusions • External validation in matched cohorts scanned with different tau PET tracers showed consistent CenTauR-based positivity rates, supporting the method's robustness and utility for multi-tracer harmonization in clinical trials. #### **Affiliations** ¹Nuclear medicine department and Molecular Imaging Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Travesía da Choupana s/n, Santiago de Compostela, Spain; ²Critical Path for Alzheimer's Disease (CPAD) Consortium, Critical Path Institute, Tucson, USA; ³Engma Biomedical Group Knoxville, USA; ⁴Eli Lilly and Company, Indianapolis, USA; ⁵Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, USA; ⁴Elorey Department of Neurology, University of Pittsburgh School of Medicine, Medicine and Public Health, Madison, USA; ¹³Department of Medicine Division of Geriatrics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, USA; ¹³Department of Medicine Division of Geriatrics, University of Wisconsin-Madison, USA; ¹⁵Department of Medicine Division of Geriatrics, University of Wisconsin-Madison, USA; ¹⁵Department of Medicine Division of Geriatrics, University of Wisconsin-Madison, USA; ¹⁵Department of Medicine Division of Geriatrics, University of Wisconsin-Madison, USA; ¹⁵Department of Medicine Division of Geriatrics, University of Wisconsin-Madison, USA; ¹⁵Department of Rodiology, Mayo Clinic, Rochester, USA; ¹⁵Department of Clinical Sciences, University, Usa, Usa, ¹⁵Department of Nuclear Medical Insaging, Massachusetts General Hospital, Bos Boston, USA; ²⁵Clinical Memory Research Unit, Department of Nuclear Medicine, LMU Hospital, Ludwig Maximilian University of Munich, Germany; ³³Cepartment of Nuclear Medicine, LMU Hospital, Ludwig Maximilian University of Munich, Germany; ³⁴Center of Alzheimer Research, Division of Clinical Sciences, Uni Acknowledgments: Critical Path Institute is supported by the Food and Drug Administration (FDA) of the Department of Health and Human Services (HHS) and 44% funded by non-government source(s), totaling \$18,881,611. The contents are those of the author(s) and do not necessarily represent the official views of, nor an endorsement by, FDA/HHS or the U.S. Government. Support is also provided by consortium members, including AbbVie Inc., Biogen Inc., Clario, Eisai, Eli Lilly and Company, F. Hoffmann-La Roche, IXICO plc., Johnson & Johnson Innovative Medicine, Lantheus Inc., Life Molecular Imaging, Merck Sharp & Dohme, Novartis Pharmaceuticals Corporation, TauRx, UCB, Alzheimer's Association.