Using Real World Data from CURE ID to Identify Drug Repurposing Opportunities in Mycology: Impact of Climate Change

Marco Schito¹, Reema Charles², Barbara Milani³, Daniel Argaw Dagne³, Pam Dasher¹, Heather Stone²

Critical Path Institute¹, U.S. Food and Drug Administration², World Health Organization³
Agenda

• Introduction to CDRC
• CURE ID: U.S. FDA vision for a public resource and WHO partnership
• WHO survey on subcutaneous mycoses
• CURE ID data on implantation mycoses and next steps
• Impact of climate change on coccidioidomycoses
• Summary
Problem statement

• A significant percentage of the world’s population suffers from diseases where no approved therapy exists

• For regulatory drug approval, a sponsor must submit a new drug application to ensure marketing of safe and effective drugs (for all indications)

• The commercial incentives for drug development may not work for all diseases and in all places...
 - Diseases are often neglected
 - No ROI despite evidence of drug efficacy
 - Unlikely to pursue additional indications for generic drugs

Question

• Can the collection of real-world data regarding off-label prescriptions be used to advance drug repurposing?
Using real-world data to advance drug repurposing

• Real-World Data (RWD) are data relating to patient health status and/or the delivery of health care routinely collected from a variety of sources.

• There is considerable interest in using RWD to generate Real-World Evidence (RWE) to support regulatory decisions about the efficacy of drug products.

• Regulators have used RWD primarily in its evaluation of safety and only in limited circumstances to inform decisions about efficacy.

• How can the scientific community move from the non-systematic collection of anecdotal reports to informing clinical trials, and potentially drug labeling?
C-Path launched a public-private partnership with U.S. FDA and National Center for Advancing Translational Science (NCATS/NIH) in June 2020 to bring stakeholders together and address how drug repurposing can be accelerated

Mission

• Become the global, public source of validated real-world data to advance drug repurposing for diseases with the highest levels of unmet medical need

• On-patent to generic drugs (lack of commercial incentives & regulatory paths)

• Provide a forum for reviewing real-world data and building consensus

• Promote, where feasible, randomized controlled trials to confirm/refute the initial hypothesis

• Generate clinical evidence to influence clinical practice
Agenda

• Introduction to CDRC

• CURE ID: U.S. FDA vision for a public resource and WHO partnership

• WHO survey on subcutaneous mycoses

• CURE ID data on implantation mycoses and next steps

• Impact of climate change on coccidioidomycoses

• Summary

Heather Stone (FDA)
A platform to capture novel uses of existing drugs

- Web-based tool
 - Computer, smartphone or mobile device
- Capture and share real-world experiences treating patients through a simple online case report form
- All data collected is HIPAA compliant and contains no PII
- Newsfeed
- Link to www.clinicaltrials.gov

https://cure.ncats.io
Agenda

• Introduction to CDRC
• CURE ID: U.S. FDA vision for a public resource and WHO partnership
• WHO survey on subcutaneous mycoses
• CURE ID data on implantation mycoses and next steps
• Impact of climate change on coccidioidomycoses
• Summary
World Health Organization (WHO) partnership

• WHO is collaborating with U.S. FDA and CDRC with the aim of collecting real world clinical data which can inform drug repurposing/clinical research

• Since 2019, WHO has been conducting a landscape analysis to identify diseases for which CURE ID may have the greatest utility

• Among the diseases to be investigated, WHO jointly with U.S. FDA and CDRC identified several implantation infections
 - Eumycetoma
 - Chromoblastomycosis
 - Sporotrichosis
 - (Actinomycetoma)
Initial work to engage global experts

• Initial inquiry with 10–12 key informants
 - International and national experts on implantation mycoses

• WHO online survey on implantation mycoses January 7th to March 15th, 2022
 - Of 318 people who approached the survey, 142 provided complete answers and 138 respondents declared their country. There were respondents from 47 countries, from all continents

• Extensive dissemination of the survey

• ISNTD webinars
 - The launch of the WHO survey with 6 speakers (4 country experiences: Madagascar, Brazil, Mexico, India) https://www.youtube.com/watch?v=aKhmkWbvp_4
 - Innovation in Data Collaborations for Future NTD Treatments https://www.youtube.com/watch?v=v7GRiKpXmIY
WHO survey respondent profiles

Geographical distribution of respondents

- Africa (North and Sub-Saharan): 26%
- Asia: 23%
- Europe: 25%
- Latin America: 3%
- Middle East: 1%
- North America: 2%

Analysis of countries and respondents by WHO region

- SEARO: Number of respondents - 10, Number of countries - 20
- WPRO: Number of respondents - 20, Number of countries - 30
- PAHO: Number of respondents - 30, Number of countries - 40
- EURO: Number of respondents - 40, Number of countries - 0
- EMRO: Number of respondents - 0, Number of countries - 0
- AFRO: Number of respondents - 0, Number of countries - 0

Respondents by economic country classification

- Low Income: 0
- Lower Middle Income: 10
- Upper Middle Income: 20
- High Income: 40
- Unclassified*: 50

Respondents by health system setting

- Primary level (Peripheral clinic/laboratory): 20 respondents
- Secondary level (Provincial/regional level): 30 respondents
- Tertiary level (National reference level): 80 respondents

Diagnostic methods available for implantation mycoses (Percentage)

- Clinical features/visual inspection: 100%
- Gram stain: 100%
- Culture: 70%
- Antifungal susceptibility testing: 70%
- Molecular diagnosis: 0%
- Histopathology on skin biopsy: 0%
- Dermoscopy/plasmolysis microscopy: 0%
- Other: 0%
Drug treatment practices for implantation mycoses

Eumycetoma

- **Non-pharmacological interventions**
 - No
 - Yes, Surgery
 - Other

Chromoblastomycosis

- **Non-pharmacological interventions**
 - No
 - Yes, heat therapy
 - Yes, Other

Cutaneous Sporotrichosis

- **Non-pharmacological interventions**
 - Cryotherapy/cryosurgery (14%)
 - Surgery/surgical excision (15%)
Drug repurposing driven by lack of drug availability, affordability, and loss to follow up

<table>
<thead>
<tr>
<th>Answer</th>
<th>Indicated use by respondent (135)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes (Available and affordable)</td>
<td>75</td>
<td>56%</td>
</tr>
<tr>
<td>No</td>
<td>60</td>
<td>44%</td>
</tr>
</tbody>
</table>

Indicative rate of loss to follow up (aggregated data)

<table>
<thead>
<tr>
<th>Medicine indicated as unavailable and/or unaffordable (* for Actinomycetoma)</th>
<th>Number of respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Itraconazole oral</td>
<td>17</td>
</tr>
<tr>
<td>Posaconazole oral</td>
<td>24</td>
</tr>
<tr>
<td>Voriconazole oral</td>
<td>23</td>
</tr>
<tr>
<td>Terbinafine oral</td>
<td>4</td>
</tr>
<tr>
<td>Potassium iodide oral</td>
<td>2</td>
</tr>
<tr>
<td>Flucytosine oral</td>
<td>7</td>
</tr>
<tr>
<td>Dapsone*</td>
<td>5</td>
</tr>
<tr>
<td>Rifampicin*</td>
<td>1</td>
</tr>
<tr>
<td>Amphotericin B IV</td>
<td>5</td>
</tr>
<tr>
<td>Liposomal amphotericin B</td>
<td>7</td>
</tr>
<tr>
<td>Streptomycin IV*</td>
<td>3</td>
</tr>
<tr>
<td>Amikacin IV*</td>
<td>4</td>
</tr>
<tr>
<td>Carbapenems IV*</td>
<td>1</td>
</tr>
<tr>
<td>Imiquimod topical</td>
<td>1</td>
</tr>
</tbody>
</table>
Agenda

• Introduction to CDRC
• CURE ID: U.S. FDA vision for a public resource and WHO partnership
• WHO survey on subcutaneous mycoses
• CURE ID data on implantation mycoses and next steps
• Impact of climate change on coccidioidomycoses
• Summary

Reema Charles (FDA)
CURE ID: Eumycetoma literature extracted case report profiles

Distribution by Gender
- Male: 34
- Female: 12

Distribution by Co-morbidities
- Immunosuppressant drugs: 46
- Chronic renal disease: 2
- Other chronic lung disease: 1
- Cardiovascular disease: 1
- Diabetes mellitus: 1

Geographical Distribution
- 8
- 6
- 5
- 3
- 2
- 1

Powered by Bing
CURE ID: Eumycetoma literature extracted case report treatment practice and outcomes

Distribution by Drug Frequency

- Itraconazole: 21
- Voriconazole: 11
- Amphotericin B: 3
- Ketoconazole: 3
- Cotrimoxazole: 3
- Flucytosine: 2
- Posaconazole: 1
- Potassium Iodide: 1
- Rifampicin: 1
- Terbinafine: 1

Distribution by Treatment Outcomes

- Itraconazole: 20 (Patient improved), 1 (Patient deteriorated), 0 (Outcome is unknown/not yet determined)
- Voriconazole: 15 (Patient improved), 2 (Patient deteriorated), 0 (Outcome is unknown/not yet determined)
- Amphotericin B: 5 (Patient improved), 5 (Patient deteriorated), 0 (Outcome is unknown/not yet determined)
- Ketoconazole: 1 (Patient improved), 1 (Patient deteriorated), 0 (Outcome is unknown/not yet determined)
- Cotrimoxazole: 2 (Patient improved), 2 (Patient deteriorated), 0 (Outcome is unknown/not yet determined)
- Dapsone: 1 (Patient improved), 1 (Patient deteriorated), 0 (Outcome is unknown/not yet determined)
- Flucytosine: 1 (Patient improved), 1 (Patient deteriorated), 0 (Outcome is unknown/not yet determined)
- Posaconazole: 1 (Patient improved), 1 (Patient deteriorated), 0 (Outcome is unknown/not yet determined)
- Potassium Iodide: 1 (Patient improved), 1 (Patient deteriorated), 0 (Outcome is unknown/not yet determined)
- Rifampicin: 2 (Patient improved), 2 (Patient deteriorated), 0 (Outcome is unknown/not yet determined)
- Terbinafine: 3 (Patient improved), 3 (Patient deteriorated), 0 (Outcome is unknown/not yet determined)

Legend:
- Blue: Patient improved
- Orange: Patient deteriorated
- Gray: Outcome is unknown/not yet determined
- Yellow: Patient’s condition was unchanged
CURE ID: Chromoblastomycosis literature extracted case report profiles

Distribution by Gender

- Female: 32
- Male: 162

Geographical Distribution

Distribution by Co-morbidities

- Diabetes Mellitus: 12
- Immunosuppresant Drugs: 11
- Hypertension: 10
- Other Chronic Lung Disease: 7
- Chronic Renal Disease: 3
- Immunocompromised Condition: 3
- Alcoholism: 2
- Chronic Liver Disease: 2
- Asthma: 1
- Cardiovascular Disease: 1
- Celiac disease: 1
- HIV: 1
- Hypercholesterolemia: 1
- Nephritic syndrome: 1
- Pemphigus vulgaris: 1
- Pregnant: 1
- Primary open-angle glaucoma: 1
- Pulmonary fibrosis: 1
- Rheumatoid arthritis: 1
- Smoker: 1

© Australian Bureau of Statistics, GeoNames, Microsoft, NavInfo, OpenStreetMap, TomTom
CURE ID: Sporotrichosis literature extracted case report profiles

Distribution by Gender

- Female: 114
- Male: 140

Geographical Distribution

Distribution by Co-morbidities

- Immunosuppressant drugs: 255
- HIV: 27
- Diabetes Mellitus: 7
- Hypertension: 5
- Smoker: 2
- Asthma: 2
- Chronic liver disease: 2
- Chronic renal disease: 1
- Other chronic lung disease: 1

Immunosuppressant drugs
- HIV
- Diabetes Mellitus
- Hypertension
- Smoker
- Asthma
- Chronic liver disease
- Chronic renal disease
- Other chronic lung disease
CURE ID: Sporotrichosis literature extracted case report treatment practice and outcomes

Distribution by Drug Frequency

- Itraconazole: 212
- Amphotericin B: 26
- Potassium Iodide: 25
- Terbinafine: 16
- Fluconazole: 6
- Voriconazole: 5
- Anidulafungin: 3
- Posaconazole: 1
- Ketoconazole: 1
- Trimethoprim Sulfamethoxazole: 1

Distribution by Treatment Outcomes

- Patient improved
- Patient deteriorated
- Outcome is unknown/not yet determined
- Patient's condition was unchanged
Do prospectively collected treatment outcomes from patients align with literature?

Next steps:

• WHO, U.S. FDA and CDRC are engaging in bilateral discussions with several groups which could contribute data to CURE ID

• Publication of the collected data to inform:
 - Diagnostic capacity/techniques, level of drug repurposing, non-pharmacological interventions with this group of diseases

• Implantation mycosis sub-group under the auspices of CDRC
 - Identification of experts/groups which can act as ambassadors
 - Evaluate covariates (disease severity, contemporaneous,...)

Challenges:

• No well-established networks for implantation mycoses: CURE ID as an opportunity to create such networks & collect treatment and epidemiological data
WHO fungal priority pathogen list

• Exploring whether CURE ID could have value for other fungal diseases identified by WHO with the priority pathogen list
• Implantation, deep, and subcutaneous mycoses
Agenda

• Introduction to CDRC
• CURE ID: U.S. FDA vision for a public resource and WHO partnership
• WHO survey on subcutaneous mycoses
• CURE ID CDRC data on implantation mycoses and next steps
 • Impact of climate change on coccidioidomycoses
• Summary
Valley fever and the link to climate change

Ashraf et al. 2020. Mycopathologia 185, 843–865

https://www.cdc.gov/fungal/diseases/coccidioidomycosis/causes.html
CDRC data: Coccidioidomycosis literature extracted
case report treatment practice and outcomes

Distribution by Gender

Distribution by Co-morbidities

- Immunosuppresant Drugs: 25 cases
- Immunocompromised Condition: 17 cases
- Diabetes Mellitus: 15 cases
- HIV: 10 cases
- Smoker: 7 cases
- Hypertension: 5 cases
- Asthma: 3 cases
- Chronic Renal Disease: 2 cases
- Pregnant: 2 cases
- Cardiovascular Disease: 1 case
- Chronic Liver Disease: 1 case
- Other Chronic Lung Disease: 1 case

Geographical Distribution
CDRC data: Coccidioidomycosis literature extracted case report treatment practice and outcomes

Distribution by Drug Frequency

- Fluconazole: 116
- Liposomal Amphotericin B: 39
- Amphotericin B: 32
- Voriconazole: 32
- Itraconazole: 19
- Caspofungin: 11
- Posaconazole: 5
- Ketoconazole: 2
- Miconazole: 2
- Azithromycin: 2
- Dupilumab: 1
- Hydroxychloroquine: 1
- Interferon-γ: 1
- Micafungin: 1

Distribution by Treatment Outcomes

- Fluconazole: Patient improved
- Liposomal Amphotericin B: Patient improved
- Amphotericin B: Patient improved
- Voriconazole: Patient improved
- Itraconazole: Patient improved
- Caspofungin: Patient improved
- Posaconazole: Patient improved
- Ketoconazole: Patient improved
- Miconazole: Patient improved
- Azithromycin: Patient improved
- Dupilumab: Patient improved
- Hydroxychloroquine: Patient improved
- Interferon-γ: Patient improved
- Micafungin: Patient improved

Distribution by Age

- <1 year: 6
- 1.5-5 years: 2
- 6-10 years: 4
- 11-15 years: 10
- 16-20 years: 10
- 21-30 years: 19
- 31-40 years: 22
- 41-50 years: 22
- 51-60 years: 24
- 61-70 years: 20
- 71-80 years: 15
- Unknown: 3

- Patient improved
- Patient deteriorated
- Outcome is unknown/not yet determined

26
Patient susceptible population due to increasing prevalence of inflammatory diseases

Conclusion: In a systematic review and meta-analysis of studies on the safety of biologic therapies in older patients with inflammatory diseases, we found that older users of biologic agents have an increased risk of infections compared with younger users or older patients who do not use biologics. Large, prospective cohort studies are needed to examine safety of biologic therapy in older patients with immune-mediated diseases.
FDA warning labels on existing biologics used to treat IBD, psoriasis, and rheumatoid arthritis

INFLIXIMAB for injection, for intravenous use
Initial U.S. Approval: 1998

WARNING: SERIOUS INFECTIONS and MALIGNANCY
See full prescribing information for complete boxed warning.

- Increased risk of serious infections leading to hospitalization or death, including tuberculosis (TB), bacterial sepsis, invasive fungal infections (such as histoplasmosis) and infections due to other opportunistic pathogens. (5.1)
- Discontinue Infliximab if a patient develops a serious infection.
- Perform test for latent TB; if positive, start treatment for TB prior to starting Infliximab. Monitor all patients for active TB during treatment, even if initial latent TB test is negative. (5.1)
- Lymphoma and other malignancies, some fatal, have been reported in children and adolescent patients treated with tumor necrosis factor (TNF) blockers, including Infliximab. (5.2)
- Postmarketing cases of fatal hepatosplenic T-cell lymphoma (HSTCL) have been reported in patients treated with TNF blockers including Infliximab. Almost all had received azathioprine or 6-mercaptopurine concomitantly with a TNF blocker at or prior to diagnosis. The majority of Infliximab cases were reported in patients with Crohn’s disease or ulcerative colitis, most of whom were adolescent or young adult males. (5.2)

HIGHLIGHTS OF PRESCRIBING INFORMATION
These highlights do not include all the information needed to use HUMIRA safely and effectively. See full prescribing information for HUMIRA.
HUMIRA (adalimumab) Injection, Solution for Subcutaneous use
Initial U.S. Approval: 2002

WARNINGS:
See full prescribing information for complete boxed warning.

SERIOUS INFECTIONS (5.1, 6.1)
- Increased risk of serious infections leading to hospitalization or death, including tuberculosis (TB), bacterial sepsis, invasive fungal infections (such as histoplasmosis), and infections due to other opportunistic pathogens.
- HUMIRA should be discontinued if a patient develops a serious infection or sepsis during treatment.
- Perform test for latent TB; if positive, start treatment for TB prior to starting HUMIRA.
- Monitor all patients for active TB during treatment, even if initial latent TB test is negative.

MALIGNANCY (5.2)
- Lymphoma and other malignancies, some fatal, have been reported in children and adolescent patients treated with TNF blockers, of which HUMIRA is a member.
- Post-marketing cases of hepatosplenic T-cell lymphoma (HSTCL), a rare type of T-cell lymphoma, have occurred in adolescent and young adults with inflammatory bowel disease treated with TNF blockers including HUMIRA.
Biologic drug pipeline: Beyond TNF inhibitors

<table>
<thead>
<tr>
<th>Company</th>
<th>Drug Name</th>
<th>Target</th>
<th>Drug Class</th>
<th>Phase of Development</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galapagos NV</td>
<td>Filgotinib</td>
<td>JAK1</td>
<td>JAK1</td>
<td>Phase 3</td>
<td></td>
</tr>
<tr>
<td>AbbVie</td>
<td>Upadacitinib</td>
<td>JAK1</td>
<td>JAK1</td>
<td>Phase 3</td>
<td></td>
</tr>
<tr>
<td>Theravance</td>
<td>TD-1473 (izencitinib)</td>
<td>gut-selective oral pan-JAK inhibitor</td>
<td>JAK1</td>
<td>Phase 3, Phase 2</td>
<td>Failed in Phase Iib</td>
</tr>
<tr>
<td>Roche</td>
<td>Etrolizumab</td>
<td>β7 subunit of α4β7 and αEβ7 integrin heterodimers</td>
<td>Anti-integrin molecules</td>
<td>Phase 3</td>
<td></td>
</tr>
<tr>
<td>Takeda</td>
<td>Ontalimab</td>
<td>MADCAM1</td>
<td>Anti-integrin molecules</td>
<td>Phase 3</td>
<td></td>
</tr>
<tr>
<td>EA Pharma Co</td>
<td>AMJ300</td>
<td>α4 integrin subunit</td>
<td>Anti-integrin molecules</td>
<td>Phase 3</td>
<td></td>
</tr>
<tr>
<td>BMS</td>
<td>Ozanimod (Zeposia)</td>
<td>S1P receptor</td>
<td>S1P receptor</td>
<td>Phase 3</td>
<td></td>
</tr>
<tr>
<td>Arena Pharma</td>
<td>Etrasimod</td>
<td>S1P receptor</td>
<td>S1P receptor</td>
<td>Phase 3, Phase 2</td>
<td></td>
</tr>
<tr>
<td>Eli Lilly</td>
<td>Mirikizumab</td>
<td>IL-23</td>
<td>anti-interleukin</td>
<td>Phase 3</td>
<td></td>
</tr>
<tr>
<td>AbbVie</td>
<td>Risankizumab</td>
<td>IL-23</td>
<td>anti-interleukin</td>
<td>Phase 3</td>
<td></td>
</tr>
<tr>
<td>AstraZeneca</td>
<td>Brazikumab</td>
<td>IL-23</td>
<td>anti-interleukin</td>
<td>Phase 3, Phase 2</td>
<td></td>
</tr>
<tr>
<td>J&J</td>
<td>Guselkumab (Tremfya)</td>
<td>IL-23</td>
<td>anti-interleukin</td>
<td>Phase 3, Phase 2</td>
<td></td>
</tr>
<tr>
<td>Boehringer Ingelheim</td>
<td>Spesolimab</td>
<td>IL-36R</td>
<td>anti-interleukin</td>
<td>Phase 3, Phase 2</td>
<td></td>
</tr>
<tr>
<td>BMS</td>
<td>BMS-986165</td>
<td>JAK1</td>
<td>JAK1</td>
<td>Phase 2</td>
<td></td>
</tr>
<tr>
<td>Seres</td>
<td>SER-287</td>
<td>Microbiome</td>
<td>Microbial Therapy</td>
<td>Phase 2</td>
<td></td>
</tr>
<tr>
<td>InDex Pharmaceuticals</td>
<td>Cobitolimod</td>
<td>TLR9 oligo</td>
<td>Toll-Like Receptors</td>
<td>Phase 2</td>
<td></td>
</tr>
<tr>
<td>Applied Molecular Transport</td>
<td>AMT-101</td>
<td>IL-10 and a carrier protein</td>
<td>Fusion Therapies</td>
<td>Phase 2, Phase 1</td>
<td></td>
</tr>
<tr>
<td>AstraZeneca</td>
<td>Abrilumab</td>
<td>Adhesion molecule α4β7</td>
<td>Anti-integrin molecules</td>
<td>Phase 2</td>
<td>*MedImmune, Amgen</td>
</tr>
<tr>
<td>Pfizer</td>
<td>PF-04236921</td>
<td>IL-6</td>
<td>anti-interleukin</td>
<td>Phase 2</td>
<td></td>
</tr>
<tr>
<td>GlaxoSmithKline</td>
<td>GSK1070806</td>
<td>IL-18</td>
<td>anti-interleukin</td>
<td>Phase 1</td>
<td></td>
</tr>
<tr>
<td>Assembly Biosciences</td>
<td>ABI-M201</td>
<td>Microbiome</td>
<td>Microbial Therapy</td>
<td>Phase 1</td>
<td></td>
</tr>
<tr>
<td>Bausch Health Americas, Inc.</td>
<td>Amiselimod (MT-1303)</td>
<td>S1P receptor</td>
<td>S1P receptor</td>
<td>Phase 1</td>
<td></td>
</tr>
</tbody>
</table>
The effect of climate change on the emergence of fungal pathogens

https://doi.org/10.1371/journal.ppat.1009503
https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1009503
More people living in areas of excess heat, wildfires, and drought

Attribution science
Researchers have published more than 170 studies examining the role of human-induced climate change in 190 extreme weather events.

- More severe or more likely to occur
- Less severe or likely to occur
- No discernible human influence
- Insufficient data/inconclusive

<table>
<thead>
<tr>
<th>Event</th>
<th>More severe or more likely to occur</th>
<th>Less severe or likely to occur</th>
<th>No discernible human influence</th>
<th>Insufficient data/inconclusive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat(^*)</td>
<td>50</td>
<td>10</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Drought</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Rain/flooding</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Oceans</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Cold/ice/snow</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Storms</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Expansion of Coccidioidomycosis endemic regions in response to climate change

Haboob: Mechanism for dispersing Coccidioidomycosis spores

Image from Jason Ferguson: August 2018 Phoenix Arizona
Agenda

• Introduction to CDRC
• CURE ID: U.S. FDA vision for a public resource and WHO partnership
• WHO survey on subcutaneous mycoses
• CURE ID CDRC data on implantation mycoses and next steps
• Impact of climate change on coccidioidomycoses

• Summary
Take home messages

1. CDRC to maximize utility of existing drugs for indications not on label
 - Tools to systematically capture real-world data, generate hypothesis, and confirm using randomized controlled trials

2. Repurposing is being used to treat implantation mycoses
 - In literature and in survey
 - Does not appear that any treatment is better than the other

3. Opportunity to capture data being generated every day globally on treatment and outcomes
 - Pilot program to align on CRF and capture prospective contemporaneous data
 - Evaluate treatments to generate evidence on effectiveness

4. Disseminate information to change clinical practice
 - Generic drugs that have no pharma interest due to lack of financial incentives

5. Climate change will increase human and animal exposure to fungal pathogens
 - Increasing the need to identify effective treatments from the existing arsenal of approved products
Thank you

Dr. Marco Schito (mschito@c-path.org)

https://c-path.org/programs/cdrc/
cdrc@c-path.org